BILGO: Bilateral greedy optimization for large scale semidefinite programming
نویسندگان
چکیده
Many machine learning tasks (e.g. metric and manifold learning problems) can be formulated as convex semidefinite programs. To enable the application of these tasks on a large-scale, scalability and computational efficiency are considered desirable properties for a practical semidefinite programming algorithm. In this paper, we theoretically analyse a new bilateral greedy optimization(denoted BILGO) strategy in solving general semidefinite programs on large-scale datasets. As compared to existing methods, BILGO employs a bilateral search strategy during each optimization iteration. In such an iteration, the current semidefinite matrix solution is updated as a bilateral linear combination of the previous solution and a suitable rank-1 matrix, which can be efficiently computed from the leading eigenvector of the descent direction at this iteration. By optimizing for the coefficients of the bilateral combination, BILGO reduces the cost function in every iteration until the KKT conditions are fully satisfied, thus, it tends to converge to a global optimum. For an ǫ-accurate solution, we prove the number of BILGO iterations needed for convergence is O(ǫ−1). The algorithm thus successfully combines the efficiency of conventional rank-1 update algorithms and the effectiveness of gradient descent. Moreover, BILGO can be easily extended to handle low rank constraints. To validate the effectiveness and efficiency of BILGO, we apply it to two important machine learning tasks, namely Mahalanobis metric learning and maximum variance unfolding. Extensive experimental results clearly demonstrate that BILGO can solve large-scale semidefinite Email addresses: [email protected] (Zhifeng Hao), [email protected] (Ganzhao Yuan), [email protected] (Bernard Ghanem) Preprint submitted to Neurocomputing Journal July 15, 2013 programs efficiently.
منابع مشابه
Stochastic local search for large-scale instances of the haplotype inference problem by pure parsimony
Haplotype Inference is a challenging problem in bioinformatics that consists in inferring the basic genetic constitution of diploid organisms on the basis of their genotype. This information allows researchers to perform association studies for the genetic variants involved in diseases and the individual responses to therapeutic agents. A notable approach to the problem is to encode it as a com...
متن کاملAdvanced Algorithm Design: Semidefinite Programming (SDP)
In the last few lectures, we considered constant-factor approximation algorithms that relied on linear programming and greedy algorithms. In this lecture, we will analyze algorithms that use a more powerful mathematical programming technique called semidefinite programming. We will illustrate the power of semidefinite programming by looking at the maximum cut problem. However, SDPs are useful f...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملRegularization Methods for SDP Relaxations in Large-Scale Polynomial Optimization
We study how to solve semidefinite programming (SDP) relaxations for large scale polynomial optimization. When interior-point methods are used, typically only small or moderately large problems could be solved. This paper studies regularization methods for solving polynomial optimization problems. We describe these methods for semidefinite optimization with block structures, and then apply them...
متن کاملA Cutting Plane Algorithm for Large Scale Semidefinite Relaxations
The recent spectral bundle method allows to compute, within reasonable time, approximate dual solutions of large scale semidefinite quadratic 0-1 programming relaxations. We show that it also generates a sequence of primal approximations that converge to a primal optimal solution. Separating with respect to these approximations gives rise to a cutting plane algorithm that converges to the optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 127 شماره
صفحات -
تاریخ انتشار 2014